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Abstract

This paper shows that imperfect output subgtitutability explains part of the observed persstent
plant-level productivity disperson. Specificaly, as subgtitutability in a market increases, the market's
productivity digtribution exhibits faling digperson and higher centra tendency. The proposed
mechanism behind this result is truncation of the digtribution from below as increased substitutability
shifts demand to lower-cost plants and drives inefficient plants out of busness. In a case study of the
ready-mixed concrete indudtry, | examine the impact of one manifestation of this effect, driven by
geographic market segmentation resulting from transport cogts. A theoretica foundation is presented
characterizing how differencesin the density of local demand impact the number of producers and the
ability of customers to choose between suppliers, and through this, the equilibrium productivity and
output levels across regions. | aso introduce a new method of obtaining plant-leve productivity
estimates that iswdl suited to this application and avoids potentid shortfdls of commonly used
procedures. | use these estimates to empiricaly test the presented theory, and the results support the
predictions of themodd. Locd demand density has a Sgnificant influence on the shape of plant-leve
productivity distributions, and accounts for part of the observed intra-industry variation in productivity,
both between and within given market aress.
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Market Structure and Productivity: A Concrete Example

Recent empirica explorations have left little doubt about the magnitude of plant-level tota factor
productivity variation: it isenormous. This heterogeneity is aso persstent. Perhaps surprisingly, much
of the variation cannot be explained by differences between (even narrowly defined) indudtries. For
example, studies reviewed in Bartd sman and Doms (2000) have found 85"-to- 15" TFP percentile
ratios of between 2:1 and 4:1 within various four-digit SIC indugtries. Productivity growth aso exhibits
huge within-industry dispersion: Hatiwanger (1997) finds that only 8.5% of productivity growth
variaion is explained by four-digit industry. An assortment of theoretical work has arisen attempting to
explain the sources of such diversty. The great mgority of this research focuses on supply-side
(production) causes, such asidiosyncratic technology shocks, management influences, R & D efforts, or
investment patterns*

In this paper | turn my attention to the demand (i.e., output market) side, and look a how
market structure can cause such within-industry heterogeneity to persist.? | argue that across-plant
differencesin output market conditions are partialy responsible for observed persistent productivity
dispersion—and in fact, the digpersion of that dispersion. The specific channd through which this
posited influence flowsis variable output substitutability in aworld of product differentition. The more
difficult it isfor consumersto switch between competing suppliers, the greater the amount of disperson
that can be sustained. | will focus here on a particular component of subgtitutability, geographic market
segmentation created by transport costs, and examine itsimpact on productivity disperson within a
sgngleindustry. The purpose of this paper, however, isnot to give the final word on trangport costs and
productivity in aparticular industry. Insteed, | hope to show through a detailed case sudy—where
many potentidly confounding factors are held constant—how transport costs as well as other
subdtitutability factors might impact productivity variation and levels throughout the economy.

The rationde for usng output market effects, and substitutability specificdly, to explain the
degree of within-industry productivity heterogeneity is more readily gpparent when we consder how

! Just a sampling includes Jovanovic (1982) and Ericson and Pakes (1995). See Bartelsman and Doms (2000)
for areview of thisliterature.

% There are supply-side stories that can explain persistent dispersion aswell. | simply want to highlight
another piece of the puzzle, to my knowledge not previously formalized, from the demand side.

1



such wide efficiency variation can exist in equilibrium. After dl, output should tend to be redllocated to
more productive plants over time. High-productivity plants are able to produce output at lower cost
than indudtry rivals, alowing them to grab additionad market share by undercutting their opponents
prices without sacrificing profit rates. We might expect this process to redistribute most or dl of an
industry’ s production to a sdlect few high productivity plants. Output and productivity patternslike this
are not usudly observed in the data, however; the overwhelming weight of empirica evidence indicates
widdy varying producer productivity levels within nearly every indudtry.

What prevents this output reallocation process from occurring? Some possible explanations,
such as demand booms (which alow nearly anybody to operate profitably temporarily), are short-run
gories. They cannot explain why we see large within-industry productivity dispersion throughout the
business cycle. Persastent technologica disparity driven by supply-side factors may play an important
role. However, thereis dmost certainly more to the story. Imperfect output substitutability isalong-run
explanation that is likely to account at least in part for the observed productivity dispersion. For
example, microbrewers may not produce their output a nearly as low a unit cost as Miller or Anheuser-
Busch, but they can survive (and even thrive) in the long-run marketplace because segments of the
population prefer microbrews to mass-produced beer and are willing to pay the higher unit prices
necessary to support the microbrewers, rather than buy from their competitors.

In Syverson (2000) | examine the role across-industry differences in measurable output
subdtitutability factors play in determining the equilibrium digtribution of plant-leve productivity within an
industry. The testable premise of that work is that industries with less output market segmentation (i.e.,
greater subdtitutability) should have plant-leve productivity distributions that have less digperson and
higher centrd tendency than distributions in industries with more segmented markets. Theintuition
behind this notion issmple. Greater subdtitutability makesit eader for customers to shift purchasesto
more efficent producers, driving plants at the bottom end of the productivity distribution out of business
and raising the bar for successful entry. Thistruncation of the distribution lowers productivity disperson
and increases the average efficiency levd in the indudtry.

This paper builds upon that theme, but takes a much more directed approach by looking at the
influence of a 9ngle source of market segmentation within one four-digit SIC indudtry. Instead of relying



on output subgtitutability variation across industries to explain differencesin industry productivity
digributions, this sudy investigates how within-industry market segmentation creates productivity
dispersgon within and between these market ssgments. A single-industry case sudy is auseful
complement to interindustry work. 1ts narrow focusimplies that the results found here do not have the
comprehensiveness of the across-industry study, but it benefits from the fact that the influence of
technologica differences on productivity heterogeneity has largely been removed. The industry choice
for the case study a0 isolates the effect of a Single source of market segmentation that has inherent
interest to asignificant body of economic research: transport cogts.

The industry | focus on is ready-mixed concrete (SIC 3273). It hasanumber of characteristics
that make it very favorable for thisstudy. Firgt, of course, industry production is subject to substantia
trangport costs. This creates a series of quasi-independent geographically segmented markets—al
potentialy subject to idiosyncratic demand movements. | look a how output subgtitutability differences
(manifested through competition among varying numbers of producers for a given set of consumers)
across these loca markets affect the plant-leve productivity distributions within them. High trangport
costs dso result in an industry characterized by alarge number of geographicaly dispersed
establishments, which is useful in the empirica portion of the pgper. Findly, indusiry output isrdéively
homogeneous. This diminishes the influence of physical product differentiation on the plant-leve
productivity digtribution, which | have found in Syverson (2000) to have a substantid effect across
indudtries. This sharpens the focus on geographic market segmentation rather than sources of agpatia
market heterogeneity.

| model and empiricaly test a competitive market structure that resultsin local concrete markets
with high demand density (demand per unit area) having productivity distributions distributed more
narrowly around a higher mean than thosein low densty markets. Further, plants in these higher-
density markets tend to be larger and each serve a grester number of customers. The mechanism
through which this happens will be explained in detall below, but can be summarized asfollows. A
larger market requires more producersto serveit. The larger number of concrete establishmentsin a
fixed market area leads to grester output subgtitutability for concrete buyers. High substitutability and

the corresponding rise in competitive pressures imply in turn that low-efficiency plants cannot operate



profitably, given the ability of customersto switch suppliers. These low-performing producers are
forced out of business, truncating the low end of the plant-leve productivity digtribution. The resulting
long-run equilibrium yields productivity distributions in larger markets that have less productivity
dispersion, higher average productivity, and a greater share of output produced by high-efficiency
plants. Thisaso causes a curious betweenplant form of returnsto scae: producersin larger markets
are more efficient on average, but not because plants become more productive as they themselves
become larger. Instead, the observed scale effect is the product of selective survivorship: less
productive establishments are eiminated as markets grow.

It is easy to imagine how geographic market ssgmentation consegquences can extend beyond the
ready-mixed indugtry, epecidly into manufacturing industries with low vaue-to-weight outputs and the
retail sector, but aso into other industriesto alesser degree. Imperfect subgtitutability crested by
transport costs can thus explain a portion of the persistent productivity heterogeneity throughout the
economy.

The paper is organized as follows. | begin by congtructing and simulating a theoretical
framework that formaizes my intuitive premise. Thisisfollowed by a discusson of plant-leve
productivity estimation methodology, where | introduce a novel estimation procedure that avoids the
potentid pitfals of commonly used methods. After reviewing the data, | present the empirica results

and test them for robustness to severd identification assumptions. A conclusion follows.

I. Theory

To formalize the story linking demand dengity, the number of producers, output substitutability,
and thelocal productivity distribution, | require atheoretical framework that incorporates heterogeneous
producers and contains some notion of consumers choosing among suppliers with differentiated
products (here, differentiation is with repect to location within the market). Further, it should dlow the
endogenous determination of the equilibrium plant productivity and output digtributions, and offer
testable implications as to the nature of these as exogenous factors vary. The primary exogenous
variable that | am interested in is demand dengty, of course, so the modd should incorporate this
variable into equilibrium determination. | meet these requirements by extending the framework first



presented in Salop (1979) to dlow for heterogeneous producer costs. The resulting model, described

below, incorporates these items and serves as atheoretica foundation for my empirical work.

Model: Market Structure
Consumers, each having an indastic demand for one indivisible unit of ready-mixed concrete,
seek to maximize the surplus of their concrete purchases, given as

iq- ptif y=1
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wherey is the quantity of concrete purchased, q is the benefit obtained from the concrete, and p' isthe
price paid by the consumer inclusive of the cost of trangporting the concrete from the plant. Clearly, the
consumer will purcheseif g > p'. | assume for amplicity that consumers are identical and have ahigh
enough vauation of concrete (alarge enough @) such that they dways purchase a unit in equilibrium.

A continuum of such consumersis evenly digtributed around a circle of unit circumference with a
dengty of D consumers per unit of length. Given the preference assumptions, thisimpliesthat tota
quantity of concrete sold in the market will be D. Thisdemand density D is the exogenous varigble of
focus; | draw testable empirical implications from its derived effects on anumber of the mode’s
characterigtics.

N concrete plants, evenly spaced around the circle, serve this market. Each producer
manufactures a homogeneous product and is subject to an identicd fixed production cost F, aswell as
an idiosyncratic margind cost ¢; drawn from a common distribution. Producers sl their output to
nearby consumers for afactory-door price of p plusthe transport cost of t per unit length from the plant
to the customer. That is, p' = p + tx, where x isthe length of the arc between the plant and the
customer. | assume that each plant’s cost draw and price are observed by all producers in the market.

| examine equilibria where there is a consumer between any two neighboring plantswho is
indifferent between purchasing from either producer.® The location of this consumer depends, of
course, on the prices of the two plants and transport costs. For any two neighboring plantsi and j, the

indifferent consumer islocated a alength x; ; from plant i, where x; ; solves

% Thisisthe “competitive” regime described by Salop (1979).
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and p; and p; are the factory-door prices set by plantsi and j, respectively. Thus

(pj'pi) 1
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Any consumers on the (shorter) arc between plantsi and j who are closer than this distance to plant i
purchase from i, while those further away (but still between the two plants) buy from .

Usng anumerica index to differentiate individud plants, any plant i with neighborsi-1 and i+1
will have sales equal to (dropping the first subscript in x)*

q, = (x., +x.,)D (4
and profits of

P =(X.1*x.)p-c)D-F (5

Each plant chooses its (factory-door) price p; to maximizeits own profits. By subgtituting (3)
into the profit equation and maximizing, it is a Sraightforward matter to derive the implied optima price
for planti as
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Thus aplant’s optimal price increasesin its neighbors' prices, per-distance transport costs, and its own
margina cost. It decreases with the number of producersin the market. All of these implications are
sensble.

Each producer’ s optimal price directly depends only on the prices of the plants neighboring it on
either sde. However, because each of those neighboring plants prices depend in turn on the prices of
their two neighbors and so on, every plant’s optima price depends on the prices of al market
producers. Thusoptimal prices are smultaneoudy determined. Finding the expression for plants
optimd pricesisfacilitated by expressng (6) for dl plantsin vector form, imposing the fact that each
plant chooses its optimum price in response to al of its competitors aso pricing optimaly (bold face

* Note that because of the circular shape of the market, the numerical index must “wrap” around itself as
plants are consecutively numbered around thecircle. That is, in amarket withN plants, plant 1 has plant 2 and plant
N as neighbors, not plant 2 and plant 0. This peculiarity comesinto play below in the configuration of a selector
matrix that selects the two neighbors of each plant in the market.
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script denotes matrix and vector quantities):
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The vectors p* and ¢ contain the prices and cost draws of all plants on the circle, from 1 to N. The
matrix i isavector of N ones, making the second term on the right Side a vector with every eement
equd tothequantity t , 2N. S, isasdector matrix that selects for each plant certain values (prices
here) of the two neighboring plants®

Equation (7) issolved for p* to yield Nashroptimd pricesfor dl plantsin terms of the mode’ s
fundamentas

=S+ &0 where s 1. 158 (g
eNg 2e 4 g

Sisnot adiagona matrix, so each plant’s optimal price is determined by the cost draws of every plant.
Infact, S has properties that make it aweighting matrix determining how much importance a plant puts
on its own and each of the other plants costs when computing its optima price. One such property is
thet the sum of al dementsin each row of Sisone, of course. Further, the elements on the main
diagond are dso the largest ementsin their respective rows (i.e., a plant factorsits own cost most
heavily into optima price setting). The magnitude of the e ements declines with increasesin the
circumferentid distance between the two plants corresponding to the element’ s row and column indices
(i.e,, the cost draws of plants on the opposite Side of the circle factor least into price-setting). Sis
symmetric, and dl eements dong a given diagond are equivaent (i.e,, only relative positioning around
the circle matters). All the eements are dso positive. While higher competitors costs imply thet a
producer can sal more at agiven price, they dso dlow a producer to increase profits by rasing
markups with less fear of losing businessto neighbors. The fact that dl dementsof S are positive
implies that this second effect dominatesin this model; competitors costs enter with postive weights

into optimd pricing. Because the row dements of S sum to one, the term (t/N)Si isSmply avector with

® The circular market shape means that for the arbitrarily numbered “first” and “last” plants, the elements of
S, corresponding to one of their neighbors are well off the main diagonal. Thisis because these two plants are
neighborsto each other on the circle, even though their index values are quite different. ThusS, has elements equal
to 1 inthefirst off-main diagonals and in the lower-left and upper-right corners, and 0 everywhere el se.
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identical dlements equal to t/N (that is, i isan eigenvector of S).°
In the gppendix, | derive the following expression for plants quantities sold at their optimal
prices.

Dél t.u
F=—a\S,- 21 )Ssc+—i; (9
(S 2)ser i ©

It isimportant to note thet it possible for individua eements of g* to be negative if aplant has
aufficiently high costs rdative to its neighbors. Negative market areas and output do not make practica
sense, of course. | will discuss further below how such plants are eiminated from the market in a
shakeout process.

Returning to the expresson for optima prices, it isasmple matter to obtain an expression for

per-unit margins as
p*-c=(S- | )c+ﬁi (10)

| show in the appendix that this expresson is equivalent to the quantity insde the brackets in equation

(9). Inother words, aplant’s price-cost margin is equa to its market area (as measured by the length
of the arc in which its customers reside) multiplied by the transport cost t. This affords an expression

for aplant’s profit, conditiona upon its optimal quantity being postive:

2
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where s ; isthei,j-th dement of S (the cost-weighting matrix). As mentioned above, the term ingde the
brackets must be positive for the plant to produce; while negative vaues of this expresson
mathematicaly create postive profits, they imply the unredigtic existence of negative outputs. Profits
predictably increase in other plants margina costs and decrease with one€' sown cost. The
characterigticsof S ensure the desirable property that the costs of plants nearer on the circle to plant i
have agreater impact on i’ s profits than those further away (that is, there is greater impact when |i —j|is
smdl—making exception for the “wrapping” of theindex). Noticethat if every plant shares the same

®Itisinteresting (and encouraging) to note that the homogeneous-producer equilibrium modeled by Salop
in hisoriginal work is aspecial case of thisframework. This can be easily seen by setting each element of the cost
vector equal to an identical value c. Inthis case, the right-hand-side of (8) isidentical for every plant. Theimplied
symmetric optimum priceisp = ¢ +t/N, which isthe solution in Salop (1979).
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margind cost, the second and third terms within the brackets cancel each other out and yield market
areasof 1/N and per-plant profitsof tD/N*—F. Thisis Sadop’s homogeneous-producer solution; it isa
gpecid case of this generdized framework.

Model: Entry, Shakeout, and Equilibrium

The model as specified above isfor an arbitrary number of plants. The equilibrium number of
producers is determined through the following entry—shakeout process. An infinite pool of potentia
entrants is assumed to be available. Entrants must pay a sunk cost of entry G before receiving their cost
and location draws. Margina cost draws are independently and identically distributed, so dl plants
entering the market do so with identical expectations of their own and their competitors' cost draws.
Given free entry, the number of plantsinitidly entering the market, Nenyy, Will be the largest number that
supports nonnegative expected profits from entry. Expected profits at entry equals the product of
average plant profitsin the post-shakeout equilibrium and the probability of a plant surviving the
shakeout, minus the sunk entry cost. That is, free entry implies that

Pr(Successful Entry )5 Post - Shakeout Profits |Successful Entry]- G=0 (12)
where both components of the expected operating profit a entry are functions of the number of
entrants. For agiven value of D and the other exogenous parameters, if both equilibrium profits and the
probability of surviving shakeout decline (weakly) monotonicaly in the number of entrants, thereisa
unique number of entrants such that the expected entry profits for (Nenr,+1) producersis negative. |
assume thisis the case for now and verify it in the smulations below.

The Neniry Entrants Smultaneoudy receive independent marginal cost draws from a common
distribution aswell as alocation draw on the circle. | require plants to be spaced evenly around the
crcle, so theinitia distance between plantsis 1/Newy. After the entrants have received their cost and
location draws, a shakeout process begins and no further entry is possible. Each producer knows its
own cost redization aswell asthe cost draws and locations of every other producer. Optimal prices,
quantities, and profits based upon these cost and location draws are computed according to (8), (9) and
(12).

| define a heterogeneous producer equilibrium to be one where dl plantsin the market, given



their margind cost and location draws, are optimally producing positive quantities and making
nonnegative profits. If al of the Nenyy initial entrants are able to do so gven their margina costs and
locations, then the origina configuration is an equilibrium. However, thisisunlikdy. At least one plant
inthisinitid configuration will most probably have a high enough margind codt rdative to its neighbors
costs so that ether its computed optimal output and margin are negative, or if these vaues are positive,
then profits are negative because revenues are less than the fixed cost F. To pin down the nature of an
equilibrium where dl producers have nonnegative profits, | specify a shakeout process which diminates
unprofitable producers from the market that is governed by a sequentia exit rule. The nature of the exit
ruleisasfollows.

For any given number of entrants, the lowest-performing plant in the market is identified for
elimination. “Lowest performing” is defined as ether the plant with the most negetive optima quantity—
if one or more such plants exis—or the plant with the lowest negative profitsif al optimum production
quantities are poditive. Either Stuation implies the plant will not produce in equilibrium. In the former
case no positive output can be supported given the cogt redlizations; any production will yield aloss of -
F. Thelatter dso implies such producers are better off exiting immediately than they are forging ahead
to produce at aloss. After this exit, the remaining producers costlessy redistribute themsdlves evenly
around the circle (however they cannot change their rdative postions—their ordind location in the
index), and optimum gStrategies are recomputed for the new configuration. The shakeout conssts of
repesating this process of diminating the lowest-performing producer, redistributing remaining plants, and
computing optimum prices until a configuration is reached where al remaining producers are making
nonnegetive profits. At that point, an equilibrium has been achieved.

It isimportant to note that while exit is sequentid, it does not take place in adynamic
framework. Rather, | am seeking a steady-state equilibrium arrived at through an iterdive,
performance-order exit rule. Of course, this process should not be thought of as aliterd description of
the evolution of an indugtry. | am not proposing that producers in a given market continudly pick up
their factories and move to a new location as competitors are diminated over time. Instead, the mode
can be thought of as a description of a game of smultaneous entry among heterogeneous producers,

where plants track their own likely evolution through the iterative exit process and make production
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decisions based upon the computed outcome.”

Examination of the expresson for plant-level profits (11) reveds the nature of the necessary and
sufficient conditions for existence of an outcome where al market producers operate profitably. The
only terms that are not common to al plants (and as such the source of profit differences across
producers) are those containing plant-specific cost draws. Clearly, the plant with the lowest sum of
these terms will have the lowest optimal quantity (and price-cost margin) and be the lowest- performing
producer. A necessary condition, then, for an equilibrium to exigt is that the smalest vaue of thissum
among dal producers (the value for the lowest- performing plant) must be great enough to yield postive
profits. That is,

tF t (13)
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It is gpparent in this expression that producers with reatively high margina costs have more difficulty
surviving the shakeout to produce in equilibrium. Asthe bar for profitable production is raised,
relaivey high-cogt plants find it more difficult to profitably operate, narrowing the equilibrium cost
digtribution and lowering its centrd tendency. This feature of the modd is crucid to creeting the
empirical implications explored below. Tightening of the necessary condition can occur either directly
through changes in the exogenous parameters D, t, and F, or from their resulting impact on the number
of producers.

A sufficient condition for the existence of such an equilibrium can be easly derived if the cost
distribution is bounded from above and below.? The most difficult scenario for a plant to meet the
profitable production requirement isfor it to have the highest possible cost draw while dl other
producers have the lowest cost draw. If aproducer can profitably operate in this scenario, the sufficient

" The enormous number of exit order permutations makesit impossible to prove that the exit rule is always a
subgame-perfect equilibrium. However, it isquite unlikely that any lowest-performing plant faced with the exit
decision will ever find it optimal to deviate from the rule and remain in the market. Thisis because the strongest
producers always stay in, and only a plant’ s weakest competition (though they are still in stronger position than the
possibly deviating plant) would exit in the case of adeviation. This particular exit rule, while not being a perfectly
verifiable equilibrium concept, seems the most sensible of the alternatives. Hence, when | refer below to the
outcomes from the lowest-performing-out exit rule as equilibria, | am not using it in the strictest sense. That being
said, this particular exit rule does not drive the results derived below. Indeed, any process which leads to weaker
(high-cost) plants having a greater likelihood of exit than low-cost plants will yield similar implications. To verify this,
| simulated the model using arule where the exiting plant each round is chosen entirely at random from those plants
with negative quantities or profits. | found that this made no qualitative difference to the outcomes.
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condition for al producers operating profitably has been met. Designate the largest and smallest
possible draws ¢ and ¢, respectively. In this case, the summeation of competitors costs smplifies as
(recdll that the elements of any row of S sum to one):

é S,;C =€ é Si, | :(1' Si) )CI (14)
jti

i

Using this smplification and (13), we can express the sufficient equilibrium condition as

b s.Jo-o)et- £ a9

The fact that the particular value of expression (13) depends upon specific redizations of
margina costs and relative locations precludes an andytica solution for the critica cutoff cost vadue. It
adso impliesthat given vaues of the exogenous parameters may yidd many quantitatively different
outcomes, each with varying numbers of producers and cogt distributions. Hence, numerica smulations
of the modd are required to ascertain the particular characteristics of equilibria as demand density

changes.

Model: Implications for Demand Density’ s Effects

While numerica smulation of the modd is necessary to precisdy compute the impact changesin
demand dengty D have on equilibrium outcomes, it isingructive to discuss the possible mechaniams
through which demand density could affect a heterogeneous- producer equilibrium. Specificaly, in order
to support the intuition discussed in the introduction, | am concerned with dengity’ s impact on the cost
digribution and plant Sze. Examination of the expresson for plant profits (11) offers hdpful indght.

The direct density effect shifts up the profit distribution by increasing sdles within plants market
aress. Assuch, the direct impact makesit easer for plants to operate profitably, aslong as their
optimal market areais postive. However, there are two countervailing indirect density impacts that
make it more difficult for plants (particularly high-cost ones) to produce profitably. Thefirg istherisein
the number of equilibrium producers as density increases. Because greater density means there are
more customers per each market arc length, a smaler market areais necessary to make postive profits.
This can (and does, as| will show) result in equilibriawith increasng numbers of producers as dengty

rises. Ceteris paribus, having more producersin a market lowers profits by decreasing sdes per plant in

® For unbounded cost distributions, just assume arbitrarily high and low realizations.
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equilibrium.®

Thereisafurther indirect influence of demand dengity on the equilibrium that is specific to the
heterogeneous- producer case. As| will show, the number of initid entrants riseswith density. If the
equilibrium number of producers does not rise proportiondly to the number of entrants (and it does
not), a greater fraction of plants exit during the shakeout process. Because, as seen above, high-cost
plants tend to have the lowest quantity and profit levels, they are more likely to be forced out of the
market. Asthe fraction of plants eiminated during the shakeout rises; then, the cost distribution of the
plants producing in equilibrium is further truncated from above.

This process, when combined with the impact of a greater number of equilibrium producers,
lowers the prospects of high-cost plants relative to low-cost producers. If the sum of these indirect and
negative impacts of dengty is great enough to offset dengity’ s direct and postive influence—and | will
show numericdly that it is—then increases in demand density yield heterogeneous-producer equilibria
with less cost dispersion and lower average costsin the market. If we think of productivity as some
reciproca function of margind cogts (it will be exactly the reciprocd if the wage is normdized to one
and the margind cost is equd to the labor required to produce each unit), then higher density markets
have less productivity disperson and higher means. Thisis, of course, the notion posited in the
introduction.

The influence of demand dengty on the number of producers serving each customer and on
average plant size depends on how the number of equilibrium producers varies with dengty. The plant-
to-demand ratio for amarket can be expressed as N/D. Obvioudy, if the dadticity of the equilibrium N
with respect to D isless than one, the ratio of producersto customersfals as densty increases. Aswill
be seen, thisisthe case. Likewise, because the average output of plantsin amarket is D/N, average

plant size in the model necessarily increases as D grows.

Model: Numerical Simulation
| numericdly smulate the model to determine the influence of changesin demand density on the
heterogeneous- producer equilibrium. 1 outline the procedure for doing so and present the results here.

Given selected vaues for the exogenous varidblest, F, and D, an equilibrium is computed in

° In the homogeneous-producer equilibrium, the increase in the number of producersis just enough to
counteract the positive profit effect of adensity increase, sustaining zero profitsfor any density level. However,
because (as will be seen) heterogeneous-producer equilibria have fewer plantsin equilibrium than the homogeneous-
plant case, the adverse effect on profits from the greater number of producersis not large enough to fully counteract
density’ sdirect influence.
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two steps. The first computes the number of initial entrants Nenry by computing the average expected
profits from entry for various numbers of entrants. The second finds post- shakeout outcomes for this
number of entrants.

In both steps, equilibria are computed in the following manner. For an arbitrary number of initid
entrants N,,, avector of independently and identically distributed margina cost draws of length N, is
created; these are the marginad cost draws of each plant a entry. A single plant’s cost must keep its
relative pogtion within the vector throughout the shakeout process. This requirement, in effect, makesa
plant’s relative position on the circle arandom draw and preserves the relative positioning of plants™®

Optimal prices, quantities, and profits are computed based on these cost draws. If Al plants
have nonnegetive market arc lengths and profits, an equilibrium has been achieved. Summary Setigtics
of the equilibrium plant-level distributions (such as the number of producers, the average markup,
average profits, and the average and standard deviation of the plant productivity levels) are then
caculated. If there are plants with negative profits or quantities, shakeout proceeds according to the
exit rule until an outcome is reached where dl plants are profitable. During the shekeout, the relaive
positioning of the remaining plantsis preserved, and optimal prices and quantities are computed
accounting for the fact that plants become spaced further apart after an exit.

To compute the number of entrants for each demand density leve that is consstent with free
entry, the modd is Smulated repeatedly at a fixed densty vaue while increasing the number of entrants
incrementally. Average profits and the fraction of initid entrants that survive the shakeout are computed
a equilibrium. Because equilibrium outcomes are themsdves stochadtic (due to variation in initia cost
and location draws), | average these vaues across 5000 equilibriafor each N, to compute the expected
vaue of entry with that number of entrants. Given that dl plants are identica prior to recelving their cost
and location draws, the fraction surviving in equilibrium is dso the ex-ante probability of surviving the
shakeout. The product of this probability and average equilibrium profits gives the expected vaue of
entry for that N, and dengity leve. If thisis gresater than the sunk cost G incurred to receive a cost and
location draw, N, isincreased by one and the processis repeated. This continues until the expected
value of entry net of the sunk cogt is negative. Neniry fOr agiven dendty leve isSmply the largest value
of N, such that expected net profits at entry are nonnegative™ | repest this process for each demand

1% The costs of each producer’simmediate neighbors are the costs above and below the plant’s own cost in
the vector, with the exception of the first and last elements (plants). Thefirst plant hasits neighbors' costsin the
second and last position on the vector, and the N plant’ s neighboring costs are in the (N-1)" and first positions.

" Ny Will be necessarily be uniqueif both the probability of surviving shakeout and equilibrium profits are
weakly monotonically decreasing inN, for a given demand density level. | found thisto be true (averaging across a
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densty vdue.

Once Nenyry is known for each demand density level, the model is smulated with this number of
entrants and descriptive datistics are caculated from the equilibrium. Again, to reduce gatistica noise
inthe results, | average these summary statistics over 10,000 equilibriafor each density leve.

Figures 1-5 show equilibrium summary statistics from smulations across arange of demand
densty levels. Plant margina cost draws are uniformly distributed on the interva [0.9, 1.1] and the
exogenous variables are set asfollows: t = 1, F = 0.00025, and G = 0.00015. Figure 1 showsthe
primary testable hypotheses of the paper, and indicates that the mode! is consstent with the intuitive
notions forwarded in the introduction. It presents plots of three moments of the equilibrium productivity
distribution (the standard devition, the smple mean, and the mean weighted by plant output shares) as
demand density varies. Clearly, higher market dengity increases average market productivity levels
while decreasang disperson. There gppears to be a diminishing margind impact of density increases for
both productivity digperson and levels, but with a highly stylized model it may be imprudent to extend
thisimplication to the data. The Sgns of the functions’ first derivatives are the primary concern here.
The roughness seen in the plots epecidly at low dengity levelsis an artifact of the integer restriction on
the number of entering plants, suggesting that integer constraints may play noticeable rolesin smdler
markets.?

Figure 2 shows how demand density influences the number of producers at entry and after the
shakeout. The number that would be supported in the stlandard symmetric-cost (homogeneous
producer) equilibrium is aso shown for reference. All are increasing concave functions of dengty. As
expected, the post-shakeout number of plantsis uniformly lower than the number entering, aswell asthe
number supported in the homogeneous producer case. The number of entrantsisfar grester than in the
symmetric cost equilibrium (where every entrant ends up producing). Figure 2 adso depicts the most
crucid factor driving the patternsin loca productivity distribution moments shown in Figure 1: the gap
between the number of entrants and those that survive the shakeout grows with increases in demand

number of outcomes because of their stochastic nature) in my computations. This makesintuitive sense. We know
from the homogeneous producer case that atotal market size of D can support afinite number of producers with
nonnegative profits. Hence, asthe number of entrantsincrease, the fraction that make it through the shakeout will
declineon average. (For large D and small N,, all entrants will be profitable upon entry, so that while the probability
of survival may not always decrease asN, grows, it does not increase.) Likewise, given that alimited market must be
split between a greater number of producers, equilibrium profits for afixed D decline asN, grows.

2 This occurs when an increase in demand density is not enough to spur an additional entrant, even though
it does increase the average number of equilibrium producers. In such cases, the shakeout processisslightly less
rigorous at the higher density level, causing the equilibrium productivity momentsto exhibit step-like behavior at
these locations. The effect might even be strong enough to cause small non-monotonicitiesin the function.
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dengity (except when the integer congtraint on entrants binds). As the proportion of the initia entrants
eliminated during the shakeout grows with higher dendity levels, plants with cost/productivity draws thet
are margind a lower dengty levels are forced to exit. Thisfurther truncates the productivity distribution
from below, and leads to higher-density markets exhibiting increased centra tendencies and decreased
diperson in their productivity digtributions.

The connection between the intensity of the shakeout and the productivity momentsis most
vividly displayed in Figure 3. Here, | plot the how the fraction of entrants that survive the shakeout—
the unconditiona probability of successful entry—and the average productivity level of equilibrium
producers change with theleve of D. As can be seen, the two functions are nearly mirror images of
each other; the average productivity level rises asthe fraction of successful entrantsfalls. Even the
jaggedness in the entry probability series (again arigng from integer restrictions on the number of
entrants) is reflected in the average productivity levels. These patterns are dso mirrored in the functions
of the other productivity moments (see Figure 1). It is gpparent that changesin the shakeout’ s intengity,
reflected in the fraction of entrants surviving to produce in equilibrium, are responsible for demand
density’ sinfluence over the productivity digtribution moments.

Theimplications regarding market structure’ s ability to truncate the distribution of producers
cost levelsis not unique to thismoded. There are other heterogeneous- producer models, such as those
of Hopenhayn (1992) and Mdlitz (1999), that incorporate an endogenoudy determined cutoff cost
(productivity) level above (below) which producers cannot profitably operate. By changing demand-
dde factorsin these models (for example, in the Mditz framework, by dlowing the adticity of
substitution between the producers' outputs to be an endogenoudly determined function of producer
density), one can obtain Smilar results. 1 choose the current modd because it includes an explicit patid
dructure, missing from other modds, for an industry in which purchase decisons are made in part on a
geographical basis.

Figure 4 shows how average markups and profits change with demand dengity. Equilibrium
average markups decline asymptoticaly toward one as density rises, but average profits climb.
Therefore the greater subgtitutability customers have in higher-densty markets yields more competitive
pricing, but at the same time, producers who survive the shakeout more than make up for thiswith
increased sdlesin their market areas. This contrasts with the homogeneous producer case, in which the
lower margins exactly counteract the profit-increasing tendencies of higher market dengities.

Figure 5 plots the behavior of average plant Sze (measured in output terms) as demand dengty

changes. It riseswith dengity. Itsrate of incresse relies upon the difference between the growth rates of
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dendty and the number of producersin equilibrium. The ratio of producers to demand unitsis smply
the reciprocd of average plant Szein thismode, so | do not plot it here. The modd impliesthat this
ratio decreases in dendity, of course.

The reaults above pertain to the impact on the mode of changes in demand dengity for fixed
vaues of the other exogenous parameters. | have dso smulated the model using various values of t, F,
and G. Changesin these exogenous parameters do not affect the qualitative nature of dengity’s effects.

These changes do, however, cause quantitative shifts in the modd’ s outcomes. | briefly summarize
them here.

Anincrease in trangport cost t induces greater entry, alows more producersin a market of a
given gze, and dlows increased markups. At the same time, it lowers post- shakeout profits, increases
productivity dispersion, decreases the average productivity level, and shrinks the producer-customer
ratio. These outcomes result from the loss of subgtitutability customers suffer when transport costs rise.

Rising trangport costs have the same quditative impact on the model as does a drop in demand density
because both induce a decrease in subgtitutability.

A risein the fixed cost of production F lowers the number of entrants and post-shakeout
producers, while at the same time increasing the sustainable markup, post-shakeout profits, average
productivity levels, and producer-customer ratio. Productivity dispersion declines. These results make
sense because increased fixed cogts eiminate those plants with marginal progpects for profitability.
Therefore only the more efficient producers survive shakeout when F rises. This both truncates the
productivity digtribution further from below and results in fewer producersin equilibrium, serving to
increase post-shakeout markups and profits.

A riseinthe sunk cogt of entry G aso lowers the number of entrants and post- shakeout
producers. Thisisunsurprisng given that high sunk costs deter entry. The decline in the number of
producers serving a given market size results in higher markups and post- shakeout profits, just asin the
case of arisein fixed production costs. However, the effect on the productivity distributionisin the
opposite direction: a greater sunk entry cost decreases average productivity levels and increases
disperson. These results are driven by the fact that producers must determine whether to incur the sunk
cost before they receive their cost and location draw, rather than after, asis the case with the fixed
production cost. While the production cost affects rlaively high-cost plants much more adversdy than
low-cogt entrants (it reduces profits for more efficient producers but drives less efficient ones out
dtogether), ahigh entry cost affects dl plants equally because plants do not yet know their prospects

when they pay the entry cost. The negative effect of sunk costs on the number of entrants is therefore
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greater than its resulting indirect influence on the number of post-shakeout producers. Hence, whilehigh
fixed production costs tend to cleanse the market of inefficient firms, high entry costs make it easer for
low-productivity plants to successfully enter by lowering the intensity of the shakeout.

To summarize the empiricd implications of the modd that | test, an increase in demand density

in amarket implies the following:
- Thedispersgon of theloca productivity distribution declines.
The centrd tendency of the productivity distribution, in both smple and quantity-weighted terms,
rises.
The number of producers per unit of demand (e.g., per customer) falls.
The average sze of producers (as measured in output levels) climbs.

| now discuss the methodol ogies used to test these assertions.

[I. Productivity Estimation and the Market Segmentation Method of Instrument
Identification

The empiricd portion of this paper requires plant-leve productivity esimates. Typicaly,
edtablishment productivity estimates are the residuds of an industry-wide production function estimated
usng plant data. This procedure implicitly assumesthat dl plants in the industry operate with the same
production technology. It isacommon assumption in such studies, and is likely gppropriate in the case
of ready-mixed concrete, which is produced by largely the same process everywhere (U.S. Bureau of
L abor Statistics (1979))."

Methods of estimating the industry production function require some etention. A naive
procedure would smply regress plant outputs on some functiona form of inputs using ordinary leest
sguares. However, as Marschak and Andrews (1944) first pointed out, Smultaneity of productivity and
inputs cause such methods to provide inconsistent estimates of production function parameters (and
therefore productivity values aswedl). Researchers have struggled since then to circumvent the
endogenous inputs problem through the use of various econometric techniques, some more successful
than others™

Olley and Pakes (1996) propose athree-step agorithm that has since become a standard
technique for estimating production functions with plant-level data because of its clever treatment of
endogeneity and relative ease of implementation.™ The thrust of their procedure isinversion of the plant

31 will test my results for robustness to technology differences across markets.

 Griliches and Mairesse (1995) survey these methods and their relative benefits and shortcomings.

!> For examples of its application, see Griliches and Mairesse (1995), Aw, Chen, and Roberts (1997), and
Levinsohn and Petrin (1999).
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investment function to back out a productivity proxy polynomia that contains only producer

obsarvables. They demondrate thisis mathematically consstent if plant investment is amonotonicaly
increasing function of plant productivity, and if productivity is the only unobserved establishment- specific
vaiablein the investment function. These assumptions ensure that, given a plant’s capital stock, thereis
a one-to-one mapping between plant productivity and investment, allowing one to control for
unobserved plant productivity vaues with observed investment and capital stocks.

Unfortunately, the ready-mixed concrete industry is a particularly poor fit for the Olley-Pakes
(O-P) dgorithm. Asl argue in Syverson (1999), the required assumption that productivity is the only
unobserved plant-specific Sate variable in the investment function is unlikely to hold when output
markets are segmented. And because of trangport costs, the ready-mixed concrete indudtry is highly
segmented geographicaly; industry establishments sdl amgority of their output to buyersin their
immediate vicinities. Under such conditions locd markets can yield considerable spatid demand
variation across producers. Because they operate so narrowly, geographically spesking, ready-mixed
plants are very likdly to take their idiosyncratic (region-specific) demand state into account when hiring
inputs. Demand (or expected demand) is then an additiona plant-pecific variable in the input demand
functions of these plants. As| demondtrate in the same paper, when other plant-specific Sate variables
do affect investment, the O-P agorithm can provide biased estimates of production function
parameters.’® The presence of additional unobserved plant-specific state varigbles in the investment
function bresks down the one-to-one relationship between plant productivity and investment, so it isno
longer possible to pin down productivity levels with investment observations'’

Instrumental variables techniques are a preferred dternative in such cases, they offer consstent
estimates even with endogenous regressors. [n practice, however, obtaining good instruments for plant-
level production data can be a chalenging task. Indeed, the cdl for methods such as the O-P dgorithm
grew out of aperceived lack of instruments correlated with inputs but uncorrelated with plant-level
productivity. A suitable instrument must exhibit some variation across plantsto gain any additiond
identifying power from the plant data. Aggregate or industry-wide serieswill not suffice. Itisthis

1® The Olley-Pakes al gorithm also requires a similar assumption about the character of aplant's
produce/liquidate decision which | contend can also |ead to biases under market segmentation. Thispointis
tangential to the discussion here, however, so | will not addressit further. An interested reader should see Syverson
(1999).

! Recently proposed modifications to the Olley-Pakes algorithm—such as Levinsohn and Petrin (1999),
which advocates using materials rather than investment to back out productivity proxies—are also subject to
problems when markets are segmented. In the case of the L evinsohn-Petrin modification, producers operating in
segmented markets are also likely to account for local demand when making materials purchases. This eliminates any
one-to-one mapping between establishment materials use and productivity and resultsin incorrect proxies.
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criterion that has caused many researchers who work with plant-level datato forsake the search for
indruments as too difficult, if not hopeless.

| contend that market segmentati on—geographic segmentation here specificaly—can be
exploited to identify establishment-leve insrument series. In thisway, the very influence that limitsthe
applicability of the O-P method in certain cases can be used to obtain consstent estimates. The key to
identifying such instruments is recognizing how markets are segmented across the plants of interest.
Market segmentation, for my purposes, refers to any way in which a seemingly industry- or economy-
wide market is actually comprised of a collection of heterogeneous “local” market units. (*Loca” does
not necessarily imply that the market is geographicaly heterogeneous, athough that is case here and for
many other goods and industries,) That is, markets are segmented whenever there is some degree of
plant-level separation in an industry's output or inputs markets. Recognizing such market heterogeneity
dlows identification of instrumenta variables, such as measures of loca demand or input codts, that will
exhibit across-plant variation when messured along the dimension of segmentation.

Shea (1993) argues that measures of congtruction activity are relevant to inputs and
goproximately orthogond to productivity in many intermediate construction goods indudtries, &t least a
the industry level. Congruction is relevant to the input levels of concrete plants because alarge portion
of industry output is used in final congtruction output; congtruction activity and ready-mixed plant inputs
arethus very likely to move together.*® Furthermore, because construction projects generally require
output from awide array of indugtries, the percentage of total costs of find congruction firms attributed
to ready-mixed doneis likdy to be raively smal.”® This small cost share makesit lesslikdly that
productivity movements in the ready-mixed concrete indusiry will ater the amount of construction
activity, because idiosyncratic price dropsin asingle intermediate input will not gregtly lower the tota
cogsfaced by find congtruction firms. Therefore, productivity movementsin the industry are nearly (if
not entirely) uncorrelated with final congtruction activity, satisfying the exogeneity criterion.®

My technique extends these instruments to the plant level by matching loca congtruction activity
measures to upsiream industry plantsin the same geographic market. The high weight-to-vaueratio of
concrete makes it reasonable to assume that concrete plants sall the vast mgority of their output locdly,

'8 For example, firms engaged in new construction activity purchased 79.8% of 1977 ready-mixed output. See
Shea (1992).

9 |_ooking at 1977 again, concrete accounted for 6.5% of new construction costs that year.

% Shea (1993) offers amore thorough discussion of how one can identify instrunents at the industry level
which are both relevant and approximately exogenous using demand and cost shares.

20



and thus make productive input decisions partly on the basis of loca demand. Comprehensive
shipments data from the 1977 Commodity Transportation Survey support this; ready-mixed plants
shipped 94.4 percent (by weight) of their total output less than 100 miles. Discussions with industry
managers aso offer anecdota evidence along these lines; most managers stated an ided delivery
distance as anything under a 30- to 45-minute drive from the plant. Therefore loca congtruction activity
measures should be suitable plant- specific instruments. We can be reasonably confident that
condruction activity in, for instance, the Lincoln, Nebraska area will influence the input choices of
concrete producers in Lincoln, but not those in, say, Tucson, Arizona. Conversdly, fluctuationsin
Grester Tucson's congtruction business will not affect Lincoln plants. If construction activity measures
are spatialy disaggregated enough, locd activity measures will capture substantid interplant variance in
the ingrument series.

It is conceivable that, despite the smdl cost share of concretein overal congtruction,
productivity in ready-mixed plantsis sill correlated with local construction activity if there are common
loca productivity shocks. For example, if there are urbanization spillovers affecting dl indudtriesin an
area, these spillovers may boost overdl congtruction activity while smultaneoudy increasing productivity
levelsin ready mix plants. Such a condition would of course weaken the exogeneity of my indruments
and leed to bias. To eiminate this possibility, | do not useloca congtruction activity measures directly
to instrument for ready-mixed inputs. Instead, | regress my construction sector activity measure
(employment) on ameasure of overdl economic activity in the same region (tota employment) and use
the resdud as my instrument. Thus| am indrumenting for ready-mixed plant inputs with the component
of loca condruction activity that is unrelated to overdl activity in the region. This effectively removes
the possibility of instrument endogeneity because of common regiona productivity shocks.

Local Marketsin the Ready-mixed Concrete | ndustry

To test the implications put forth by the earlier modd, | must place the ready-mixed plantsin my
sampleinto local markets. My chosen geographic market unit is the Bureau of Economic Anayss
Component Economic Area (CEA). CEAsare collections of counties usualy—but not dways—
centered on Metropolitan Statistica Areas (MSAS). The BEA sdects counties for incluson in agiven
CEA based upon MSA datus, worker commuting patterns, and newspaper circulation patterns (subject
to the condition that a CEA contains only contiguous counties). This ensures that countiesin agiven
CEA ae subgantidly intertwined economicaly. These 348 markets are mutudly exclusve and

exhaudtive of the land mass of the United States, so each istypically comprised of seven or eight
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counties.®

| choose the CEA as my unit of analysis because it is the best compromise between severd
conflicting requirements. The theoretica foundation of this study assumesthat local concrete markets
are essentidly isolated geographic units, where plants in one market only compstitively interact with
other plantsin their locd area. Any interaction with ready-mixed production units in other marketsis
assumed away. While there are bound to be some cross-border concrete sdesin redlity, the
Commodity Trangport Survey shipment data discussed previoudy testify to the high trangport costs for
the industry. These plants have very limited operations radii, so if | draw local markets sufficiently large
enough, | can decrease the amount of cross-market sdles occurring in my data. For this reason, defining
individua counties as separate markets may be ingppropriate; it islikely that a non-trivid fraction of
ready-mixed produced in the county will be consumed outside of it. On the other hand, | do not want
to make markets S0 large that there is very little competitive interaction between many of the included
establishments. Plants placed in too large a market may not al respond to the same market forces
(erther externd influences or the actions of industry competitors). CEASs are a suitable compromise
between these two poles. Furthermore, because most are centered around M SAs or other population
centers (and those that are not are composed of very rurd counties), the counties on CEA borders are
likely to be more sparsely populated with concrete plants. The bulk of ready-mixed productionin a
market is then centrally located, decreasing the likelihood of between-market sales. CEAs are aso not
required to adhere to state boundaries, which would sometimes place unwarranted market boundaries

in economically interconnected areas.”

[ll. Data
Local Construction Activity Data

The key to implementing the market ssgmentation principle of ingrument identification is
ingrument data that can be pared aong the axis of market heterogeneity. The present case requires
congruction and dl-industry activity data at a geographically disaggregate level. Such data does exist. |
use loca congtruction instruments derived from the Census Bureau' s public-use County Business

? See U. S. Bureau of Economic Analysis (1997) for more detailed information about CEA creation.

% A further practical consideration favors the useof CEA -defined markets. Larger market areas increase the
number of area establishments, allowing better estimation of productivity distribution moments, but decrease the
total number of observations, decreasing the precision of estimates. Most CEAs contain an adequate number of
ready-mixed establishments to obtain plant-level productivity distribution moments, while still affording a sufficient
number of market-year observations.
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Patterns (CBP) annud data over the 1979-1993 period. The CBP contains Mid-March employment
by major industry for every county in the United States. These employment values are my downstream
activity measures. Public-use Census data at such a fine geographic resolution often have censored
observations, but thisis avery minor obstacle in the case of the congtruction sector (SICs 15-17). The
sector’s ubiquity and abundance of smdl firms dlows full disclosure of summary datigticsin al but the
amallest of counties. For those counties with exact congtruction employment data withheld for the sake
of confidentidity (roughly 1.5% of the county-year observations), atota employment range is reported.
In those cases, | Smply use the mean of the range as the imputed employment for the period. The
impact of using imputed numbersis likely to be even less than their proportion indicates, asthe typicaly
smdl nondisclosure counties are less likely to contain sample plants?

| ds0 take advantage of the geographic dimension of the CBP survey to examine how changing
the level of geographic aggregation of the congtruction activity data affects the insruments rdevance. |
aggregate the instrument data a three geographic levels. Thefinest aggregation is at the county leve, as
the data are origindly reported. In this case, congtruction employment in a given county (the component
independent of overdl county employment movements) instruments for inputs a ready-mixed
edablishmentsin that county. County activity is an extremely local measure, however, even for plantsin
localy focused indudtries. While many such plants do likely operate largely within one county, it isaso
highly probable that a Sgnificant fraction sall their output outside the boundaries of their county. Thisis
especidly true for larger establishments in multi-county metropolitan areas, and in the Northeast, where
counties are amdler in area than their western counterparts. Multicounty activity measures may be more
appropriate in such ingances. | therefore aso instrument using congtruction activity data aggregated at
two broader levels. Thefirgt, and the smadler of the two geographically spesking, is at the CEA levd.
The third and highest geographic instrument aggregate | use is a the Economic Area (EA) leve. The
BEA combines CEAs that are considered themsalves to be economically interconnected into 172 EAs.

Congruction sector and al-industry employment for these larger geographic divisons are smply the

sums of the respective county-level vaues for al counties within the CEA or EA. | do lose some
across-plant variation in the instrument set when | aggregate geographicaly, of course. Thelossin
identifying power may be a necessary tradeoff in order to gain relevance in those industries with plants
that largely operate beyond their counties' borders.

% CBP data also have annual industry payroll numbers that could also serve as activity measures. | found
no systematic difference between results obtained using real payroll (not reported here) and those using
employment.
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Plant Level Production Data

| take ready-mixed concrete plant output and inputs data from the 1982, 1987, and 1992
versons of the Census of Manufactures (CM). The CM (part of the Bureau' s Longitudind Research
Database) contain awedth of information on plant production activity. Importantly here, it dso contains
the state and county where the establishment is physicaly located, so it is possible to match each plant
with locd ingrument vaues a dl three geographic aggregation levds. My sample period was limited
because of availability limitations of the annua CBP instrument data, which isonly avallable for 1977
onward (I require three lags of instrument values for each input observation). Some smdl plants
(typicdly with fewer than five employees)—cdled Adminigrative Record (AR) plants—have imputed
data for most production variables. | exclude these plants from my productivity sample, but do count
them when computing the number of producersin a market.

The estimated production function is expressed in terms of gross physica output. My
benchmark specification does not use deflated revenue as the output measure, as is commonly donein
sudiesusng plant-level data. Thisis because of the concern that this practice can result in production
function estimation biases if there is plant- specific price variation in the industry caused by differencesin
demand conditions across plants, as demongtrated by Klette and Griliches (1996). Thisissue will be
discussed further below. Instead, | take advantage of the fact that the CM collects plant-leve output
data (broken down by seven-digit SIC products) in physicd units for many indudtries, including ready-
mixed concrete. | will dso check the robustness of my findings to the use of the traditiona output
measure of inventory-adjusted sales deflated by an industry-specific deflator.

Producer labor inputs are the sum of production worker hours (a reported vaue in the CM) and
an imputed va ue for nonproduction worker hours. Nonproduction worker hours are constructed using
the method of Davis and Hatiwanger (1991), where the number of nonproduction workers at the plant
ismultiplied by the average annua hours worked by nonproduction employees within the corresponding
two-digit industry and year. The average hours vaues are based on Current Population Survey data.

Plant equipment and structures capital stocks are the establishment’ s reported book vaue
capital stocks deflated by the ratio of book to red vaues for the corresponding three-digit industry in
that year. Industry-leve capital stocks are published BEA data. The vaue of any reported machinery
or building rentds is inflated to a stock by dividing by the BLS rental cost of capita seriesfor the
respective capita type. Thetota capita stock used in production function estimation is constructed by

summing the equipment and structures stocks.
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Red materiads usageis plant materials cogts divided by a corresponding four-digit materids
deflator. Energy input isthe sum of dectricity and fud expenditures deflated using a four-digit energy
cost index. Each of the industry-specific price deflators used in this process is taken from the
Bartelsman, Becker, and Gray/NBER Productivity Database.

Input cost shares used to construct a composite input are computed as follows.  Establishment
labor costs are the sum of total salaries, wages, and benefits paid to permanent workers plus any costs
from hiring contract labor. Capita costs are the product of establishment capital stocks and the BLS
capita rental cost series. Energy costs include dectricity and fuel purchases, and materids costs are a
separately reported item inthe CM. | sum dl these to obtain total costs, and caculate shares using this
vaue. Eachinput isweighted in the compaosite input by the average cost share in the ready-mixed

industry over the current and previous CM years. 2

IV. Empirical Results
Production Function and Productivity Estimation

The prerequisite for my empirical work is estimation of an industry production function. As
mentioned above, the commonly used Olley-Pakes procedure may not be appropriate for the ready-
mixed industry because the geographic market segmentation present in the industry makesit likely that
concrete producers take their local demand state into account when making their investment decisions.
This makes it impossible to back out accurate productivity proxies because there is no one-to-one
mapping between plant productivity and investment. In Table 1, | present evidence to thiseffect. The
table shows relevance statistics obtained from regressng the investment levels of ready-mixed plants (I
do not include observations with zero reported investment, as those cannot be used with the Olley-
Pakes method) on the instrument sets | use in estimating the production function. Each investment
observation is projected on the current value, three lags, and one lead of local congtruction sector
employment (aready cleansed of overal regiond effects). | dso include year dummies to remove
industry-wide and aggregate effects and a dummy indicating whether the plant belongs to a multiplant
firm. | report the analys's using indruments aggregeted at three different geographic levels (regressons

# Results obtained using plant-level cost shares rather than industry averages did not qualitatively change
the benchmark findings described below, other than to lower the estimated returnsto scale. | do not present them
here because of space considerations.

® Thislag/lead pattern was chosen based on two considerations. Thefirst ismy prior belief about the
extent of management decision horizons, both forward- and backward-looking. The second consideration is Buse's
(1992) demonstration that superfluous instruments in an instrument set lead to estimation biases. The resulting
lag/lead structure is areconciliation of these two factors.
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using the county-leve instruments contain dightly fewer observations because some plants had missng
county data). The table shows F-ddidics for the joint Sgnificance of the five condruction activity
terms, the RZ of the regression, and the construction terms’ partial R (the addiitional explanatory power
gained by adding the downstream demand indicators to the year and multiplant dummiesin the
regression), estimated both with and without plant effects. The demand terms are highly Satigticaly
sgnificant (p-vaueslessthan 0.001) and, | believe, rlevant economicaly. Producers clearly take their
loca demand state into account when making investment choices. Theinfluenceis especidly strong
when | account for plant effects by running the relevance tests using deviations from plant means.
Because the demand ingruments should be orthogond to plant productivity levels, the regressonsimply
that there is a substantia influence of downstream demand on investment that is independent of plant
productivity. This breaks any one-to-one correspondence between productivity and investment that the
O-P dgorithm could explait to obtain a productivity proxy. Insrumenta variables estimates are
preferred for the present application.

To obtain plant productivity vaues, | estimate the following production function:

O =9, *b; +d, +g,d . 9, X, W,
where

X = Gl t Skt S + S8
and s isthe cost share of input j during periodt. All continuous variables are measured in natura
logarithms. | include the plant effect b; because the model presented above implies plants in markets
with higher demand dengity are more productive on average. Estimating the production function while
accounting for plant effects completely removes any systematic cross-sectiond differencesin
productivity levelsthat are corrdated with loca demand conditions (if they have not dready been
purged when constructing the instruments).”®  The production function specification also includes year
dummies to estimate d; and amultiplant dummy dq that captures the influence of operating as part of
amultiple-establishment firm. Instead of entering the four inputs (Iabor, capitd stock, materids, and
energy) separatdly into the function, | use an industry-cost-share-weighted composite input x;;. Under
the assumption of cost minimization, the estimate of g, is the degree of returnsto scale.

While | include plant effects to improve the quality of the production function estimates, | do
want to indude their levelsin my plant-specific productivity level estimates. After dl, | am interested in
average plant productivity levels across markets. Using only an estimate of the production function

% Excluding plant fixed effects from the estimation does not substantially change the qualitative nature of
the findings presented below. A set of such estimates are available from the author.
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resdua w;; as a productivity measure leaves out any such level effects. Hence, | measure the
productivity levels of the plantsin my sample instead as the estimate of b; + w;;. Thisvaueis obtained
by firgt estimating the production function estimates using variables deviated from their plant means, then
subtracting the product of the estimated value of g, and the plant’ s logged composite input, aswell as
the year and multiplant dummy coefficients (when gpplicable), from itslogged outpt.

As mentioned previoudy, my benchmark specification uses output measured in physica units
ingtead of the commonly employed plant revenue deflated by an industry-wide price index, due to
concerns that the latter may introduce estimation biases. Revenue differences caused by plant-specific
price deviations from the industry average enter into the error term of a production function; i.e., they
areinduded in the plant’s estimated productivity level. If this price variation reflects interplant
differencesin compstitive environments rather than quality variation, then idiosyncreticaly high revenue
will be attributed to output (and hence productivity) rather than price. In thisway, interplant price
variation can induce spurious productivity disperson. Possible implications semming from output
mismeasurement of this form, while recognized by many, have largely been ignored in other studies
because of difficultiesin properly accounting for their influence. There are some exceptions, however.
Particularly relevant to this paper isthe research of Klette and Griliches (1996), which demonsirates
how price-induced measurement error can bias production function estimeates. If plant-level prices are
correlated with my ingruments, the instruments are no longer orthogona to the production function
resdud (now containing the measurement error). Thisisadigtinct posshility here; it is quite plausble
that plant-leve prices are postively corrdated with plant-specific demand. This could lead to biasesin
my production function and productivity estimates. Using physica output data instead of deflated
revenue removes the problem of disentangling output and price.?’

| use acomposite input rather than the four individual components because of practica
estimation congderations. While the market- ssgmentation instruments can be theoreticaly applied
toward estimating any functiona specification, thereis an issue hampering such efforts. As Shea (1997)
demondtrates, instruments should not only be relevant to each of the individual endogenous explanatory
variables, they should have linearly independent rdevance. Thisimplies here that downstream activity

%" Some SIC 3273 plants produce seven-digit products other than ready-mixed concrete. Thisfact could lead
to its own output measurement problemsif plants differ in the percentage of their total output accounted for by
ready-mixed. Two factors minimize any such problems. First, ready-mixed plants tend to be quite specialized; the
average primary product specialization ratio (i.e., the percentage of shipments that are ready-mixed concrete) for
industry plantsis near 95%. Second, | divide plants’ ready-mixed production by their primary product specialization
ratio to adjust all plantsto acommon output scale.
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measures should influence plant hires of each input (Iabor, capitd, energy, and materids) independently
of the other inputs. While some independence may be gained through the ability of the lag/lead structure
of the indrument set to capture differing dynamic impacts across input demand functions, the high

degree of comovement in the response of the inputs to downstream demand may overpower any such
effect. Indeed, attempts to estimate a Cobb-Douglas specification using IV methods yielded
unacceptably high standard errors?® The necessity of linearly independent relevance is obvioudy not an
issue when using acompositeinput. The composite input specification offers the further advantage of
not imposing a pecific functiona form on the production function.

Table 2 shows production function estimates obtained using the local congtruction activity
indruments in atwo-stage least squares procedure. | present estimates for instrument sets at each of
the three geographic aggregation levels. Through the remainder of the paper, | will use productivity
estimates derived from the CEA instruments to be consistent with my market area definition. It is
unlikely this choice will change the nature of my findings much; as can be seen, the production function
estimates are cong stent across instrument sets.

Thefirst Sage rlevance gatitics in Table 2 indicate that even after controlling for overall loca
economic activity and plant and aggregate effects, local congtruction activity is germane to concrete
plant inputs. The F-datidtic for joint Sgnificance of the five congruction activity termsis highly
ggnificant. The firgt stage results not only make the case for statistica relevance, but economic
relevance aswel. Theinstrument st explains roughly ten percent of plants input variation over time,
The congtruction activity instruments partia R is between five and seven percent. These values
compare favorably to resultsin other studies that use largely cross-sectiona establishment panels. The
overdl direction of the instruments' influence on inputs was positive, asis expected. The remainder of
the table shows the production function estimates. The composite input coefficient is quite precisely
estimated, and it indicates congtant refurns to scae in the industry.

Local Productivity Distributions, Plant Size, and Demand Density
The centrd question of this paper is whether subgtitutability factors in markets (as embodied in
locd demand density) affect plant-level productivity distributions. The two distribution momentsthet |

2 | could obtain additional instruments that influence specific inputs, | could add these to the instrument
set and possibly gain linearly independent influence acrossinputs. Thiswould allow separate technology parameter
estimation by input. Time and data constraints leave me to only use downstream measures in the instrument set for
now. | leave expansion of the set to future work.
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am mogt concerned with are dispersion and centra tendency. | use measures of these moments
selected to account for specific measurement concerns. Dispersion is measured by the interquartile
range of thelocd productivity digtribution. An ordind disperson measure is employed to minimize
spurious influence from outliers. Thisis not an uncommon practice; see Roberts and Supina (1997), for
example. Outliers are aspecid concern in this study for two reasons. With establishment deta, it is
fairly easy for measurement and reporting error to creep into the data and create nonsensica
observations. Additiondly, the fact that some of the markets have a small number of plants increases
the vulnerability of traditionaly calculated moments to outlier effects. | choose the interquartile range
rather than another quantile span because wide spans, despite being ordind measures, are a'so more
subject to outliersin small markets. | measure the centra tendency of the productivity distribution in
two ways. Thefird isthe median productivity level in the market. Again, | choose an ordind measure
to minimize measurement problems. The second, the market’ s output-share-welghted average
productivity, takes the output distribution explicitly into account. This measure is more vulnerable to the
influence of outliers, of course, but captures whether output is reallocated to more productive producers
as demand density increases.

Furthermore, | dso explore how demand density impacts the ratio of producers per unit of
demand and average plant Size. To do 0, | construct measures these two variables at the market leve.

The producer-demand retio is Smply the number of plantsin amarket areadivided by congtruction
sector employment. Downstream sector employment is used here again as a proxy for the size of loca
demand. Average plant Sizeisthe mean of plants congtant-dollar salesin the market. | use deflated
sdes as an output measure here because saes are directly reported by even Administrative Record
plants, dlowing me to accurately account for their impact.

The use of Component Economic Aress as local market units offers a potential number of 1042
observations (348 CEAs x 3 years). Inthe benchmark results, | use only those market-year
observations with at least five non-AR plantsin order to improve moment measurement accuracy. | will
test the results for robustness to this cutoff.

The empirica specification used to test for the impact of demand density on the local
productivity distribution and number of producersis asfollows:

Y. =b,+b,dens, + X B, +e,
This specification assumes that the dependent variable in market i, year t isafunction of a congant, the
locd demand dendty dens;, a vector X,;; of other influences on the moments, and an CEA-year-

specific error term. My dependent variables include plant-level productivity distribution moments
29



(measures of dispersion and central tendency) as well as the producer-demand ratio and the average
plant Ssze measure. | estimate four versons of this genera model. A smple univariate regresson of the
dependent variable on logged demand dengty (the number of construction employeesin the CEA
divided by itsland areq) characterizes the nature of the correlation between these variables. | then add
avector X ;; of other local demand influences. Finaly, both of these modes are rerun with year
dummies to remove any industry-wide influences on the loca productivity and output distributions.

The vector of loca demand controls X, ; contains an assortment of variables that plausbly
impact the state of the regiona ready-mixed concrete market, and as such may impact theloca
establishment-level productivity and size didtributions through channds other than the patid
substitutability influence of demand density.”® | include a set of variables characterizing the
demographics of the CEA: the percentage of the population that is nonwhite, the fraction over 25 years
old, the proportion with at least a bachelor’s degree, and the number of marriages per 1000 population.

Each of these variables is aggregated from vauesin the 1988 verson of the City and County Data
Book. The race and the marriage variables are 1984 data, while the others are from the 1980
population census. | dso include variablesthat are likdly corrdated with the concrete demand
specificdly, induding the fraction of households with at least two automobiles, the fraction of housing
units that are owner-occupied, the median value of owner-occupied housing, and median persond
income (also from 1980 and 1984). | aso add the growth rate of local construction employment over
the previous five years to control for short-term effects (for example, atemporary boom might alow
relatively inefficient producers to operate for ashort while). The average primary product specidization
ratio (PPSR) of the ready-mixed plantsin the region and year isdso included. | found in Syverson
(2000) that physical product differentiation strongly affects industry productivity distributions.
Controlling for PPSR differences across market areas should remove much of any product
differentiation impact.

Ciccone and Hall (1996) explored the effect of market dengity on productivity levels. Whilein
much the same spirit as this study, their research employs a much more top-down approach. They
work with highly aggregated production data. As such, they investigate productivity effects averaged
across many indudtries rather than in specific sectors, and they are unable to examine differencesin

productivity disperson. Further, they use an overal employment density measure meant to capture

# Most of these control variables change over timein actuality; however, some are time-invariant measures
here due to datalimitations. For these controls, | have attempted to use values gathered as close to the middle of the
sample period as possible.
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agglomeration effects of ungpecified origin(s). This contrasts with my industry- specific downstream
demand density measure which is meant to embody a specific mechanism through which market density
acts. Indeed, it is possible that the mechanisms modeled and tested here are at least in part driving
Ciccone and Hall’sresults. To further digtinguish any findings here from their results, though, | incdludein
Xt ameasure of loca employment density using 1986 civilian employment numbers that is congtructed
just like their dengity measure. Hence the impact of local demand density found below is independent of
overd| dengty effects.

The summary gatistics in Table 3 indicate there are nontrivid differencesin productivity
moments and average plant sizes across loca markets. For example, amarket having amedian
productivity one standard deviation larger than another’ s has plants with a 22% greater median
productive ability (characterized in physical output terms) on average. Asfor productivity disperson, its
gandard deviation is over three-fourths of the average dispersion, indicating subgtantia variation. The
gtandard deviation of average plant Sze (in output terms) is 62%.

The benchmark results are presented in Table 4. The table shows, for each specification and
dependent variable, the estimated demand density coefficients and heteroskedasticity-robust standard
erors. | do not report covariate estimates in the interest of parsmony; panel B gives an idea of the
nature of the covariate coefficients for a disperson, centra tendency, and plant size dependent
variables.

The results support the predictions of my modd. Productivity dispersion declines with density,
and median productivity and the quantity-weighted productivity levelsincrease. The number of
producers per demand unit fals, while average plant Sze dimbs. These results hold for every
dependent variable and for each of the four modd versions. All but one of the coefficients are
datisticaly sgnificant at the 5% level. The exception has the expected Sgn, but is not Sgnificantly
esimated. The estimatesimply thet, controlling for other influences on demand, a one-standard-
deviation increase in logged demand density will decrease expected dispersion by gpproximately 0.077
points—roughly one-fourth of the mean disperson and one-third of its standard deviation (see Table 3).

The same dengity increase corresponds to a 2.1% increase in median productivity and a one-tenth
gandard deviation hike in quantity-weighted productivity levels, dthough the latter effect is not
ggnificantly estimated. An equivaent dendity increase accompanies a decrease in the plant-to-demand
ratio of nearly one-hdf of its sandard deviation, and a 20% rise in average plant outpuit.
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Adding market demand controls to the regression does change the magnitudes of the
coefficients. The estimated magnitude of the downward effect on dispersion becomes even grester
once loca demand conditions are accounted for. On the other hand, density’ s estimated impact on the
other dependent variables often diminishes. Still, even after accounting for these influences, the implied
direction of dengty’ simpact remains.

The dropsin size and/or significance in the demand densty coefficients seen in the median and
quantity-weighted productivity regressions once demand controls are added can be readily explained.
As discussed above, Ciccone and Hall (CH) found that overall market density positively influences
average productivity levels. When | remove the CH overal density measure from the controls, demand
densty’s estimated effect on productivity levels growsin magnitude and sgnificance. This can be seen
inthefina columnin Table 4. It is gpparent that the impacts of demand density and overdl dendty on
average productivity levels are observationaly closdly related.® This may be because demand
density’ simpact (at least the component independent of overdl thick-market effects) influenceslocd
productivity disperson more than levels. On the other hand, it may be smply that the demand dendity
mechanism posited here isin part driving the Ciccone-Hall results, and that an overal market density
measure (which has a 0.65 correlaion coefficient with my demand density measure) captures the causd
influence of demand dengity. Regardless of the specific mechanism, thereis clear evidence that the
average productivity levels of concrete producersin denser markets are higher than for their low-density
counterparts.

Interestingly, it seems that trangport-cost-driven subgtitutability explains only a modest portion
of the differencesin local productivity distribution moments across markets. The R for the univariate
regressionsin the benchmark specification indicate that demand dengity differences done account for
roughly 4% of the across-market variation in productivity disperson. The ability of dengty to explan
median productivity levelsis stronger, but till moderate. These modest values are somewhat surprising,
given the percelved level of homogeneity in reedy-mixed output.

Robustness Checks
In this section | will test the robustness of the main results to many of the empirical modeing
assumptions made above.

% Given that the CH density measure isincluded in the vector of control variablesin the modelsyielding the
second and fourth columns of the table, the significantly measured influence of demand density seen in those models
isindependent of any overall density effects.
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Small Sample Bias. Because anumber of my observations have their productivity distribution moments
cdculaed usng only afew plants, it is possble that smal sample biases in these moment calculations
may be affecting my results. | perform a Monte Carlo experiment to check for this possibility.

To do 0, | populate my region-year cellswith plant productivity and output observations
chosen at random (with replacement) from my entire sample. Each cell is populated with the same
number of plants asin the actud sample, except here producers are randomly assigned. Productivity
moments are calculated by region-year observation as before, and these moments are used in the same
demand dengity regressions run in the benchmark specification. If demand density doneis responsble
for variation in productivity distributions across regions, then the moments from randomly selected plants
should be unaffected by demand dengity. On the other hand, if small sample biasis (e least in part)
driving the results, this should show up as nonzero dengty coefficients in regressons usng moments
from randomly populated cells.

Table 5 reports summary datistics of the distribution of demand density coefficients obtained
from 10,000 such trids. Asis gpparent, the means of the coefficients from the randomly populated
regressions, while often estimated to be satistically distinguishable from zero, are quite smal. Further,
nearly dl of the actua demand density coefficients from the benchmark specification (displayed in the far
right column) are outside extreme values of the coefficient distribution. The only exceptionsto thisare
the productivity leve coefficientsin modes including demand and year controls (which are,
unsurprisingly, some of the weakest results in the benchmark case). It isclear that smdl sample biasis

quite smdl in magnitude and not respongible for my findings

Minimum Number of Establishments. Table 6 shows estimates obtained usng any CEA-year
observation with more than one non-Administrative Record plant, rather than only using those with a
least five non- AR plantsin the sample. The generd patterns seen in the benchmark results hold. The
estimates from the univariate and year dummies modds are Smilar to those from the five- producer
cutoff sample. There are afew noticeable differences: demand dengity’ s estimated impact on
productivity dispersion in modds with demand controls fals from the benchmark, and its influence on
the median productivity levelsincreases. Other coefficients change little from the benchmark case. The
declinein the disperson coefficients from their benchmark can perhaps be explained by the fact that
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meaningful dispersion measurement is more difficult in markets with very few plants®

While some changes in estimates occur with different minimum plant number criteria, the
contents of Table 6 support the implications of the theory. In al cases, the estimated demand density
effects have the expected Sgn, and dl but one are gatisticaly sgnificant.

Capital Measurement. | exclude any Adminigtrative Record plants from my sample because most of
their production data (except totd sdes and number of employees) isimputed. The plantsin my sample
have directly reported data, with one exception: capital stocks are imputed for those plants not in the
current Annua Survey of Manufactures (ASM) pane (panels span five year periods sarting in years
endingina“4” or “9"). ASM plants comprise roughly one-third of my sample. A plant’s probability of
being sdected for inclusion in the ASM pand increases with Sze, so my sample may have a substantia
number of smdler concrete plants with imputed capitd stock data. Given that the tendency seen above
for lower dengity markets to have smaller plants on average, spurious productivity mismeasurement (and
hence disperson) may be systematicaly greeter in smdler markets. The influence of possible capitd
measurement error on productivity estimates is mitigated by the fact that capitd cost shares are rather
smdl in the industry (around 6.5 percent), but to ensure capital imputations are not responsible for my
results, | perform two exercises.

Inthefird, | rerun the disperson and median level specificationsin Table 4 using plant-leve
labor productivity measures (using both physica output per employee and per hour) rather than total
factor productivity estimates. Capita measurement concerns are not an issue in this case (dthough
interplant capital intengty variation is). These results, which support the earlier findings, are shownin
Table 7. Dengty coefficients are of the expected sign, and significantly o, for every dependent variable
and moadd.

Next, | sdect only ASM plants for my sample, and re-estimate the production function, TFP
levels, and locd demand density regressions using only these plants. Doing so, of course, severdy limits
my sample Sze, because there are far fewer local markets with multiple ASM plants. To counteract this
loss of identification power, | use a cutoff level of two ASM plantsto select loca area-year
observations. Doing so leaves 394 observations. Table 8 shows estimates obtained with this limited

3| also estimate a specification, not shown here, using a cutoff of ten non-AR plants. In this case, the
dispersion coefficients in the specifications with demand controls again climb to the levels seen in the benchmark
estimates, suggesting that dispersion measurement does suffer somewhat in markets with few plants. The estimates
for the productivity-level specifications with demand controls become insignificant, also suggesting that demand
density’ sinfluence on productivity levels (independent of overall density) may fade somewhat in larger markets.
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sample. The demand density coefficients are congstent with the findings from the full sample. The
esimates dl have the expected Sgn. They are less precisaly estimated, of course, but most remain
sgnificant.

These two sets of results offer evidence that capital measurement error is not driving the
benchmark results®

Output Measure. Asdiscussed above, | use physical output measures to avoid possible productivity
edimation problems arising from plant-leve price variation. However, if price differences embody
qudlity differences, | want my productivity estimates to incorporate this term, since productivity should
idedlly measure ddlivered quaity aswell as quantity.®

The ready-mixed concrete industry may appear to produce a very homogeneous product,
leading one to bdlieve that any plant-level price variation results from competitive rather than quaity
differences across producers. However, there is some reason to believe that qudity differences may
exig within the industry. By changing ingredient ratios and using admixtures, producers can achieve
variation in the physical and aesthetic properties of ready-mixed concrete in order to meet specific
buyer needs. Discussions with industry managers indicate that shipments often vary considerably in such
properties, and that unit costs reflect differences in material and production costs across concrete types.

If plants differ in the proportions with which they produce these various product styles, quaity
differences will be reflected in total revenue numbers.

The connection between plant-leve qudity and price variation is difficult to quantify because
ultra-detailed product information is not available. It isan easier task, however, to measure the relative
strength of demand influences on prices using the product-leve datain the Census of Manufactures. It
isimportant that this connection be weak for accurate productivity estimation with deflated revenue
output, because correation between my demand instruments and output measurement error will bias
estimates. Since both sales and physical outputs are reported at the product level inthe CM, | can
compute plant-level unit prices. By regressng these (logged) prices on my instruments, and comparing

% Another possible form of capital mismeasurement arises from variable capital utilization. Capital stock
data do not indicate the intensity with which capital is utilized in production. If utilization varies substantially across
producers, capital stocks do not accurately measure the amount of capital services employed by the plant in
production. To assesstheinfluence of variable capital utilization on my results, | re-estimated the empirical model
using plant productivity levels obtained by a method suggested in Basu and Kimball (1997). This procedure uses
hours per worker as a proxy for capital intensity by assuming that production is Leontief in value added and
materials. Theresults of this exercise, which are available from the author, largely mirror the benchmark results.

% Abbott (1992) discusses this issuein considerable detail.
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these results to the regressons of plant input on the instruments (the first stage of the IV estimation), |
can gauge the relative impact of demand on prices and output.

In the price regression, the five local demand variables have apartiad R of 0.011. The vaue of
the F-datistic for joint Sgnificance of the demand termsis 20.38. Comparing these datigticsto the
previoudy reported vaues from the regresson of plant inputs on the instrument set (see Table 2)
indicates that demand increases are absorbed more by production boosts than price hikes. Thisis
suggestive evidence that price digoerson in the concrete industry may be driven by factors other than
demand. Furthermore, it suggests the estimation biases from using deflated revenue are minimized here
by the high degree of comovement between my instruments and output reletive to their correation with
prices.

To check the benchmark results for robustness to my output measure, | re-estimate the
production function and plant productivity levels usng deflated revenue in place of physica output, and
use these productivity vauesin the demand density regressions. Here, yearly gross output is measured
asaplant’ stotd vaue of shipments (adjusted for changesin inventories over the year) divided by an
output deflator for the ready-mixed industry from the NBER Productivity Database. | report the results
in Table 10. Pand A shows the results of the production function estimation. The sdient fegture of the
table isthe higher estimate of returnsto scale. (Note that the other coefficients, asintercept terms, differ
in magnitude from their benchmark counterparts because physical output and deflated revenue are
measured in different units. Thisistrue of the demand dengty coefficientsin the productivity distribution
moment regressonsaswel.) Theincreasing returns seen here would result if larger plants tend produce
higher-quality concrete. This quality difference would show up in a deflated revenue output measure but
not in aphysica output measure. Thereis some mild evidence suggesting this; the correlation between
the deviations of logged prices and input levels from their plant meansis dightly pogtive (0.05).
However, this could dso be an artifact of procyclica markups within plants. Adding to the ambiguity is
the fact that estimating other pecifications using deflated revenue, such as leaving plant effects out of the
production function, drops the scale coefficient back down to levels seen in the benchmark case (these
results are not shown here).

Pandl B shows the results from the productivity moment etimations® The results for
productivity disperson are Smilar in qudity to thosein Table 4. Disperson fals as dengty grows.

¥ The results for the plant-to-demand ratio and average plant size dependent variables are virtually identical
because these variables are measured the same way in both cases. The only difference arises from asmall changein
samplesize, so | do not report them here.
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These estimates are Satidicdly sgnificant and condgtert across dl modds, with the estimated impact
being larger when other local demand controls are added. The results from the productivity level
regressons are weaker. All coefficients are satidicdly insgnificant, and two have an unexpected sign.
The weskness of demand dengity in these cases may result from the high returns-to-scde esimate in the
edimation of the production function: higher output levels of large plants (which tend to be in large
markets) are attributed to internd scae efficiencies rather than idiosyncratic productivity. Another
possibility isthat, as the mode implies—and as | have confirmed empiricaly (these results are not
presented due to space considerations)—average prices across markets decline with demand density.
This negative reationship between physica productivity and average prices may explain why a revenue-
based productivity measure shows no level effect of dendity but a physical output measure does. It dso
is conggtent with the finding that density’ simpact on revenue-based productivity dispersion remains,
because productivity and price dispersion are positively related in the modd. The implications of these
across-market price differences are intriguing and may warrant further research.

Pant-leved price variation introduces additiona issues into the empirica tests using deflated
revenue output. Certainly, the negative impact of demand dengty on productivity disperson remains
regardless of output measure. Whether the weaker results for dengity’ simpact on productivity’s centra

tendency are driven by quaity or competitive differences across plants and markets is unclear.®

Technology Differences. One of the advantages of using asingle-industry case study to examine the
link between subdtitutability and plant-level productivity digributionsis eimination of any impact from
between+industry technology differences. However, even within anarrowly defined industry with largdy
smilar production methods across plants, it is possible that some difference in production technologies
exigs. For example, the primary technologica innovation in the ready- mixed concrete industry over the
sample period was the trangtion from manua to automatic batching (the mixing of concrete orders
according to a“recipe”’). If thisinnovation soread unevenly over time or geography, plants may have
been operating smultaneoudy under different technologies. Further, if technology adoption differences
result in part from demand market structures, local technologica factors may be corrlated with my
explanatory variables. This may introduce biasinto the above results.

¥ Asafurther check on the consistency of the productivity estimates, | obtained a set of results using a
traditionally calculated productivity index values rather than estimated plant productivity measures. Productivity in
this case is computed as the log of physical production minus aweighted sum of logged inputs. Weights for each of
the four inputs (capital, labor, energy, and materials) are the industry -wide average of the plant-level cost shares of
the respective inputs over the current and previous CM years. These results mimicked the benchmark findings.
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To measure the influence of any such effects, | run a specification which adds three technology
controls to the previoudy discussed demand controls. These controls are specific to each region and
year. Thefirg isthe fraction of plantsin the region operating as units of amultiplant firm. It ispossble
that plants operating as part of alarger firm have additiond advantage in securing investment financing
and thus may be able to more easily obtain new production technology. Hence regions dominated by
multiplant firms may be more likely to operate on the technological edge of the industry, possibly
affecting moments of the loca producer productivity distribution. The second control is the average
capital-to-labor ratio of ready-mixed producersin the region. Thisvariable should capture most of any
capital-embodied technology differences between regions. The third technology variable is a measure
of the average real wage in theregion. Thisis constructed from County Business Patterns data for
edablishmentsin al indudtries, not just concrete. All-industry wages are used to capture whether an
areaisahigh- or low-wage area without confounding the specific choices made by ready-mixed plants
in their labor purchases that may not be correlated with technology.

Table 11 compares the results for the full mode (year dummies and demand controls included)
with and without the technology controls. The comparison is to the benchmark specification, so | use
productivity estimates obtained with physical output values. It appears that across-plant technology
differences are not greetly affecting the results. Other than diminishing the Sze of demand density’s
estimated impact on the local quantity-weighted average productivity level, there are no notable
differencesin the benchmark estimates once technology differences are accounted for. In no caseisthe
implied direction of influence changed.

V. Conclusion

| have posited that demand dendity differences across geographically segmented markets
change plant-leve productivity digributionsin intuitively predictable ways. The results above strongly
support this assertion.  Evidence from ready- mixed concrete producer data shows that markets with
higher demand densgity have local productivity distributions with less disperson and higher average
productivity levels. Plants tend to be larger and serve more customers on average in higher-density
markets. These findings are consstent across changes in specific empiricad modeling assumptions. The
driving mechanism is explained theoretically as the effect of demand dengity on producer density, and
hence on within-market subgtitutability. Greater competition within denser markets makesit more
difficult for low-efficiency plants to profitably produce, truncating the lower end of the local plant-leve
productivity distribution.
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The findings of this case study have severd implications. Mogt directly, they suggest arole
played by geographicaly segmented markets in accounting for some of the persistent productivity
disperson observed in the data. Further, transport costs induce a pattern of increasing returnsto scae
based on sdlective survivability across market areas. larger plants tend to be in larger markets, and
larger markets tend to have higher average productivity levels. Such processes would lead to
economies becoming more efficient asthey grow. The results so suggest a specific mechanism driving
agolomeration externdities measured in other dudies. Additiondly, the results may suggest congderable
potentia for decreases in trangport costs to change the efficiency level digtribution. These may be
interesting avenues for future research.

Lessdirectly, but perhaps more broadly applicable, the paper’ s findings bolster my results
(presented in Syverson (2000)) using interindustry variation in measurable subdtitutability factorsto
explan differencesin the productivity distributions of industry producers. Other factors that limit output
subdtitutability besides transport costs, such as product differentiation, can be pointed to as sources of
persstent efficiency differences. These other influences work through the same basic mechaniam as
trangport costs to change producer productivity distributions.

The empirica evidence aso suggests that much work remains to be done to completely
characterize the nature and sources of productivity disperson. Evenin the “controlled” environment of
an industry case study, observable factors till only account for asmall fraction of the observed variance
of productivity digtribution moments. Thereis gtill an enormous amount of productivity heterogeneity
being caused by factors beyond plausible output-merket influences. Supply-sde factors doubtlessy
account for some of this. Perhaps aswdll thisis a strong stlatement about the role of unmeasured (andin
many cases, unmeasurable) product differentiation—such as subtle variations in product attributes,
subjective product differentiation, and bundled abstract goods—in explaining why we see such stark
efficiency differences across plants.
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Appendix

A. Derivation of expression (9).
Using (3) and (4), | can express aplant’s quantity sold as afunction of its own and its neighbors prices.

Stacking plant-specific equations yields an expression for this relaionship in vector form:
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Substituting equation (8) for p* into this equation gives an expression for g* intermsof c:

q- =
a*

cnm
NH

Inspection of the properties of the S, and -21 matrices revedls that the second term ingide the brackets
isequa to avector of zeros (intuitively, any pricing e ement common to al producers has no bearing on
rdative sdeslevels). Using thisfact and bringing t™ outside the brackets gives asmplified expresson
for the plants quantities sold:
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t82(s 2| )SC+WIH

B. Show that the bracketed termin (9) is equivalent to the right-hand-side of equation (10).
| must provethat 0.5(S, —21)S=S—1.

* =

Fird, digtribute the scalar and S through the term in parentheses:
0.5(S,—21)S=0.55,S-S.
Now given the definition S°© 0.5(1 — 0.25S,)™, rewrite S, as:
S, =4l —2st.
Subdtituting with this expresson yields
0.55,S—-S=0.5(4l —2SH)S-S
=2S-S'S-S
=S—1I.
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Figure 1: Post-Shakeout Productivity Distribution Moments
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Figure 2: Number of Plants at Entry, Post-Shakeout, and in Symmetric Cost Case
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Average Productivity

1.065

1.06

1.055

1.05

1.045

1.04

1.035

1.03

1.025

1.02

1.015

Figure 3: Fraction of Entrants Producing after Shakeout and Average Productivity
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Figure 4: Average Post-Shakeout Markup and Profits
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Table 1: Relevance of Local Demand to Plant-L evel | nvestment

This table shows rdlevance gatigtics from aregresson of plant-level investment on loca demand
measures. For details see text.

No Plant Effects Plant Effects
Instrument Set N R Patiad R F R? Patid R F
County 8192  0.032 0.010 17.34  0.054 0.032 55.49
CEA 8264  0.037 0.016 26.60  0.075 0.053 94.68
EA 8264  0.038 0.017 3941  0.075 0.053 93.90

Table 2: Production Function Estimation Results

This table shows instrumenta variables production function estimates (first and second stage) for ready-
mixed concrete plants, using loca demand measures as instruments. For details see text.

Instrument 1% Stage Stats 2" Stage Coefficient Edimates
Set N F RZ Part. R2 d82 d87 dmult Xit R2

County 11,017 1287 0094 0053 -0.068 -0.09 0008 1.064 0.182
(0.006) (0.007) (0.005) (0.027)

CEA 11,114 1774 0112 0071 -0073 -0.087 0008 0992 0.201
(0.006) (0.007) (0.005) (0.023)

EA 11,114 1762 0111 0071 -0.073 -0.088 0.008 0.999 0.201
(0.006) (0.007) (0.005) (0.023)

Table 3: Descriptive Statistics—All Region-Y ear Observations (N=1034)

Vaiadle Mean  Std. Dev. Skewness IQRange 90-10%ile
Prod. Digpersion (1Q Range) 0.317 0.245 2.693 0.231 0.494
Median Productivity 4.794 0.217 -7.810 0.166 0.344
Qty.-Weighted Avg. Prod. 4.913 0.498 2.156 0.245 0.673
In(Plants per Demand Unit) -6.391 0.736 -0.020 1.015 1.881
In(Average Plant Size) 7.374 0.622 0.024 0.844 1.567
In(Demand Dengity) 0.315 1.405 0.072 1.535 3.533
Demand Density 4.115 11.88 5.386 2.293 7.652

TFP (N=11114) 4.808 0.367 -1.646 0.289 0.659






Table 4. Local Productivity Distribution Regressons—M ain Results

A. Locationyear observations with at least 5 non- Administrative Record producers, N=688.
Heteroskedadticity-robust standard errors are in parentheses. An asterisk indicates significance a the
5% levd.

Demand Controls: No Yes No Yes Yes
Dependent (w/o CH)

Vaiddle Y ear Dummies. No No Yes Yes Yes
Productivity R? _ 0.041* 0.093* 0.058* 0.113* 0.111*
Dispersion Demand Density -0.024 -0.052 -0.025 -0.055 -0.046
Cosfficient (0.005) (0.015) (0.005) (0.015) (0.011)

Median R? 0.124 0.164 0.194 0.235 0.229
Producivity Demand Density 0.030* 0.024* 0.029* 0.015* 0.026*
Cosfficient (0.003) (0.006) (0.003) (0.006) (0.005)

R? 0.013 0.051 0.057 0.077 0.077

Q-Wt. Avg. : N . . "

Producivity Demand Density 0.030 0.049 0.028 0.032 0.038
Cosfficient (0.008) (0.025) (0.008) (0.023) (0.014)

Plants per R? 0.565 0.682 0.579 0.696 0.686
Demand Unit Demand Density -0.368* -0.258*  -0.363* -0.244* -0.318*
Coefficient (0.015) (0.034) (0.014) (0.034) (0.026)

Average R? 0.348 0.570 0.410 0.628 0.622
o magt Demand Densty ~ 0.228¢  0.158* 0219 0140  0.187*
P Cosfficient (0.013) (0.024) (0.013) (0.023) (0.016)

B. Summary of Demand Control Coefficients (See text for details.)

Dependent Varigble Sgnificant, Pogtive Coefficients Sgnificant, Negative Coefficients

Productivity Median Housing Price, 1987 Dummy Marriages per Capita, Fraction with

Disperson Bachdor's, 2+ Auto Households
Median Percentage Nonwhite, Fraction over
Productivi Ciccone-Hdl Densty 25, Fraction with Bachelor’'s, 1982
R4 and 1987 Dummies

Marriages per Capita, Fraction with Fraction over 25, 2+ Auto
Average Output Bachelor's, Median Housing Price, Households, Primary Product
Ciccone-Hall Dengty, Demand Specidization Ratio, 1982 Dummy



Growth, 1987 Dummy



Table5: Monte Carlo Results, Benchmark M odel (10,000 trials)

The table shows various vaues from a distribution of estimated coefficients usng productivity moments

from regions randomly populated with plant productivity-quantity pair draws, aong with the actua

egimated coefficient from Table 4. For detals see text.

A. Dependent Variable: Productivity Disperson

Model Mean Std. Dev. 1%ile 9ile S%ile 95%ile Actud
Univarigte 0.00031 0.00178 -0.00382 0.00441 -0.00259 0.00325 -0.024
Demand Controls  -0.00109 0.00415 -0.01073 0.00878 -0.00788 0.00580  -0.053
Y ear Effects 0.00032 0.00179 -0.00384 0.00443 -0.00260 0.00326  -0.025
Demandand Year -0.00109 0.00420 -0.01083 0.00885 -0.00791 0.00592  -0.055
B. Dependent Variable: Median Productivity
Model Mean  Std. Dev. 1%ile 9Waile S%ile 9%ile Actud
Univarigte -0.00001 0.00300 -0.00694 0.00697 -0.00497 0.00498 0.030
Demand Controls  0.00601  0.00717 -0.01065 0.02266 -0.00581 0.01776 0.024
Y ear Effects -0.00008 0.00302 -0.00715 0.00692 -0.00508 0.00490 0.029
Demandand Year 0.00569 0.00725 -0.01158 0.02243 -0.00637 0.01755 0.015
C. Dependent Variable: Quantity-Weighted Average Productivity
Model Mean  Std. Dev. 1%ile 9Wile S%ile 95%ile Actud
Univariate 0.00021 0.00721 -0.01688 0.01726 -0.01163 0.01224 0.030
Demand Controls  -0.00073  0.01697 -0.04058 0.04010 -0.02846 0.02692 0.049
Y ear Effects 0.00021 0.00726 -0.01714 0.01748 -0.01165 0.01222 0.028
Demandand Year -0.00069 0.01718 -0.04132 0.04043 -0.02879 0.02711 0.032



Table 6. Local Productivity Distribution Regressions—Alter native Minimum Required
Observations

Observations with at least 2 non- Adminigtrative Record producers, N=990. Heteroskedasticity-robust
gandard errors are in parentheses. An agterisk indicates significance at the 5% leve.

Dependent Demand Controls: No Yes No Yes
Vaiade Y ear Dummies No No Yes Yes
. R? 0.040 0.067 0.047 0.077
Product .
Di;ﬁg’(‘ﬁ’ Demand Densty ~ -0.034*  -0.030*  -0.035*  -0.029*
Coefficient (0.006) (0.013) (0.006) (0.013)
Median R? 0.065 0.089 0.111 0.130
Producivity Demand Densty 0.029* 0.033* 0.028* 0.028*
Coefficient (0.003) (0.007) (0.003) (0.007)
Q-Wt. Avg. R? _ 0.011* 0.03]; 0.03(1 0.049
Producivity Demand Densty 0.033 0.048 0.031 0.033
Coefficient (0.008) (0.022) (0.008) (0.021)
Plants per R? 0.518 0.636 0.530 0.647
DemandUnit  Demand Densty -0.366*  -0.266*  -0.363*  -0.254*
Coefficient (0.012) (0.027) (0.012) (0.027)
R? 0.307 0.506 0.351 0.554
Average

Demand Density 0.236* 0.172* 0.230* 0.161*

Output Coefficiert 0012)  (0.022) (0011)  (0.021)



Table 7. Local Productivity Distribution Regressions—L abor Productivity Measures

Locationyear observations with at least 5 non- Administrative Record establishments, N=688.
Heteroskedadticity-robust standard errors are in parentheses. An asterisk indicates significance at the
5% levd.

Dependent Demand Controls: No Yes No Yes

Variddle Y ear Dummies; No No Yes Yes
Dispersion, R? 0.011 0.035 0.012 0.037
Output per Demand Densty ~ -0.023*  -0.061*  -0.023*  -0.063*
Employee Coefficient (0.008)  (0.023) (0.008) (0.014)
Dispersion, R? 0.008 0.034 0.008 0.028
Output per Demand Densty ~ -0.020*  -0.048*  -0.020*  -0.049*
Hour Coefficient (0.008)  (0.019) (0.008) (0.019)
Median, R? 0.283 0.350 0.411 0.479
Output per Demand Dengity 0.112* 0.112* 0.106* 0.089*
Employee Coefficient (0.007)  (0.015) (0.007) (0.006)
Median, R? 0.242 0.315 0.339 0.416
Output per Demand Dengity 0.097* 0.088* 0.093* 0.069*
Hour Coefficient (0.007)  (0.015) (0.007) (0.013)
Qty-Wt. Avg, R? 0.130 0.391 0.254 0.496
Output per Demand Dengity 0.121* 0.108* 0.114* 0.076*
Employee Coefficient (0.010)  (0.026) (0.010) (0.023)
Qty-Wt. Avg., R? 0.132 0.432 0.224 0.507
Output per Demand Dengity 0.111* 0.087* 0.107* 0.063*
Hour Coefficient (0.009)  (0.021) (0.009) (0.020)



Table 8. Local Productivity Distribution Regressons—ASM Plants Only

Location-year observations with at least 2 ASM establishments, N=387. Heteroskedasticity-robust
gandard errors are in parentheses. An asterisk indicates sgnificance at the 5% level.

Dependent Demand Controls: No Yes No Yes
Vaidble Year Dummies. No No Yes Yes
L R? 0.002 0.040 0.024 0.057
Product .
Di;ﬁg’(‘ﬁ’ Demand Densty ~ -0.011  -0.065*  -0.010  -0.064*
Coefficient (0.013)  (0.020) (0.012)  (0.019)
Median R? 0.179 0.315 0.209 0.353
Productivity Demand Dengty 0.104* 0.113* 0.105* 0.102*
Codfficient (0012)  (0.022) (0.011)  (0.023)
0-Wt. Avg R? _ 0.0393c 0.0923c 0.0523c 0.112*
Productivity Demand Dengty 0.112 0.180 0.116 0.154
Codfficient (0.025)  (0.068)  (0.024)  (0.067)
R? 0.499 0.653 0.502 0.663
Plants per . . . N .
Demand Unit Demand Dengty -0.321 -0.195 -0.322 -0.182
Codfficient (0.020) (0.034) (0.020) (0.034)
R? 0.269 0.546 0.296 0.591
Average  hendDensty 0191 0.099* 0190  0.089*
ouput . . . .

Coefficient (0.018)  (0.024)  (0.018)  (0.023)



Table9. Local Productivity Distribution Regressions—No Plant Effects
A. Production Function Estimation Results

1% Stage Stats 2" Stage Coefficient Estimates
N F R PatR| dy de7 Ot Xit R’
11,114 61.04 0.043 0.026 -0.157 -0.144  0.095 0.995 0.263
(0.009) (0.010) (0.007) (0.020)

B. Locd Productivity Digtribution Regressions

Location-year observations with a least 5 non- Administrative Record producers, N=688.
Heteroskedadticity-robust standard errors are in parentheses. An asterisk indicates significance at the
5% levd.

Demand Controls: No Yes No Yes Yes
Dependent (w/o CH)
Vaiddle Year Dummies No No Yes Yes Yes
Productivity R? 0.042 0.093 0.058 0.110 0.110
Dispersion Demand Dengity -0.024~* -0.052* -0.026* -0.053* -0.049*
Coefficient (0.005) (0.015) (0.005) (0.015) (0.011)
Median R? 0.094 0.145 0.098 0.147 0.136
Productivity Demand Dengity 0.025* 0.008 0.025* 0.009 0.022*
Coefficient (0.003) (0.006) (0.003) (0.006) (0.005)
O-Wt. Avg R? 0.044 0.070 0.049 0.071 0.063
Producivity Demand Dengity 0.041 0.021 0.042 0.020 0.046

Coefficient (0.007)  (0.015) (0.006) (0.016)  (0.011)



Table 10. Local Productivity Distribution Regressons—Deflated Revenue Output Measure
A. Production Function Estimation Results

1% Stage Stats 2" Stage Coefficient Esimates
N F R PatR| dy de7 Ot Xit R’
11,652 1858 0.112 0.071 -0.037 -0.024 0.011 1.093 0.340
(0.005) (0.005) (0.004) (0.018)

B. Locd Productivity Digtribution Regressions

L ocation-year observations with at least 5 establishments, N=703. Heteroskedasticity-robust standard
errors are in parentheses. An asterisk indicates significance at the 5% level.

Dependent Demand Controls: No Yes No Yes
Vaiadle Y ear Dummies No No Yes Yes
. R 0.014 0.049 0.038 0.062
Producti .
DiS[;Jersllycl)trzl DemandDensty ~ -0.011*  -0.020  -0.011%*  -0.024*
Coefficient (0.003) (0.007) (0.003) (0.007)
Median R? 0.005 0.084 0.063 0.172
Productivity Demand Density 0.005 0.003 0.004 -0.005
Coefficient (0.003) (0.005) (0.003) (0.005)
O-Wt Avg R? 0.001 0.071 0.036 0.112

Demand Density 0.002 0.003 0.002 -0.003

Productivity Codfficient (0.004)  (0.008)  (0.004)  (0.008)



Table 11. Local Productivity Distribution Regressons—T echnology Controls (Physical
Output Measure)

Locationyear observations with at least 5 establishments, N=688. Heteroskedadticity-robust
dandard errors are in parentheses. An asterisk indicates sgnificance at the 5% levdl.

Dependent Controls Demand  Demand
Vaiadle Only and Tech
. R 0.113 0.120
Pr
D‘i’g[‘:;tggg’ Demand Density ~ -0.055*  -0.049*
Coefficient (0.015)  (0.015)
Median R? . 0.235 0.243
Producivity Demand Densty 0015  0.014*
Coefficient (0.006)  (0.007)
R? 0.077 0.100
ggjﬁg DemandDensty 0032  0.009
Coefficient (0.023)  (0.021)
R 0.696 0.719
DP' ants pj]i . DemadDensty ~ -0244*  -0263"
emand Coefficient (0.034)  (0.030)
R? 0.628 0.642
Average

Demand Densty 0.140* 0.137*

Output Coefficient 0023)  (0.023)



